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In rare-earth metals the magnetization dynamics is determined by the interplay between the magnetization
M4f of localized 4f electrons and the magnetization m of delocalized 5d6sp valence electrons, whereby both
subsystems can deliver angular momentum to the lattice, thus producing damping. It is shown within the
framework of a phenomenological version of the s-f model that the effective Gilbert damping parameter for
M4f�t� is given by �4f

ef f =�4f +�5d6sp / �1+M4f /m�, where �4f is a direct 4f contribution and �5d6sp describes the
Gilbert damping for the valence magnetization. By a combination of the ab initio density-functional electron
theory with the breathing Fermi-surface model it is shown that for a �0001� orientation of the magnetization the
indirect valence contribution to �4f

ef f is comparable to the damping parameter of Co �which is considerably
smaller than the one of Ni�. Measurements of the damping at low temperatures and for Gd samples with high
purity are required to figure out whether there is a considerable larger direct contribution �4f.
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I. INTRODUCTION

In recent years there has been a steadily growing interest
in the physics of fast1 �typically nanosecond� and ultrafast2

�several picosecond or femtosecond� dissipative magnetiza-
tion dynamics. Examples for the fast time scale are the dy-
namics of domain walls in nanowires,3 the magnetization
reversal in nanomagnets,3 and the dynamics of vortices,4 and
such processes are of potential use in advanced data process-
ing devices. Ultrafast magnetization dynamics is induced by
exposing a ferromagnetic film to a very intense femtosecond
optical laser pulse, resulting sometimes5 in a nearly complete
quenching of the magnetization in a time T1 of down to
about 100 fs. This is believed to be the ultimate time scale
for the macroscopic manipulation of the magnetization.

For both time scales the creation and relaxation of
electron-hole pairs play an important role. On the nanosec-
ond time scale the electron-hole pairs are generated by the
nonadiabatic dynamics of the atomic magnetic moments
itself6,7 whereas for the femtosecond time scale the laser
beam produces these quasiparticles.2 During the relaxation of
the electron-hole pairs via scattering of electrons at phonons
or defects angular momentum is transferred from the elec-
tronic system to the lattice by the action of the spin-orbit
coupling, and this leads to the damping of the magnetization
dynamics.

For the nanosecond time scale the magnetization dynam-
ics is usually described8–11 by the following equation of mo-
tion:

dM

dt
= − ��M � Hef f� +

1

M
M � �=

dM

dt
�1�

or on extensions of this equation including the effect of spin-
polarized transport currents. In Eq. �1� the first term de-
scribes the precession of the magnetization M around an
effective field Hef f �� is the gyromagnetic ratio�. The second
term represents the damping and �= is the damping matrix
�which has at most two different nonzero eigenvalues corre-
sponding to two different eigenvectors� which, in general,
depends on the momentary configuration of the magnetiza-

tion in the whole sample. For a homogeneous magnetization
this means that the damping depends on the momentary ori-
entation of this magnetization in the crystal �orientational
anisotropy of the damping�. Furthermore, because of the ma-
trix character of �= the damping depends on the momentary
orientation of dM /dt �rotational anisotropy�. It has been
shown7 that the anisotropy of the damping is relevant for low
electron scattering rates whereas it becomes isotropic at high
scattering rates. Equation �1� reduces to the well-known Gil-
bert equation12 when the matrix �= is replaced by a constant
damping scalar �. Furthermore if the momentary magnetiza-
tion points into a high-symmetry direction of the crystal then
the two eigenvalues of �= are identical and the momentary
equation of motion again has the form of a Gilbert
equation.10

For the ultrafast time scale the magnetization dynamics is
described by a phenomenological2 or a microscopic13,14

three-temperature model for the interaction between the elec-
tron, spin, and lattice subsystems. In the microscopic version
of the three-temperature model13,14 the transfer of angular
momentum is accounted for by the spin-flip scattering of
electrons at phonons, described by a probability ael that an
electron-phonon scattering event is accompanied by a spin
flip of the involved electron. It is reasonable to assume that
the same microscopic relaxation mechanisms are responsible
both for the fast and the ultrafast magnetization dynamics.

There are many papers in which the quantities � and T1
�or ael� are measured or calculated for various materials and
in which it is explored how these quantities can be modified,
e.g., by doping with various atoms.15 For the nanosecond
time scale the investigations focus on the ferromagnetic 3d
metals Fe, Co, and Ni and their compounds and alloys,
whereas pure rare-earth metals have not been considered so
far, most probably because they are magnetic only at tem-
peratures lower than room temperature so that they are less
relevant for technological applications. In contrast, for the
demagnetization after femtosecond laser pulses there are sev-
eral investigations also for the rare-earth metal Gd �Ref. 16�
showing that in this material the laser-induced demagnetiza-
tion is slower by three orders of magnitude than in ferromag-
netic transition metals. In Gd magnetism is dominated by a
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half-filled 4f shell with magnetic moment 7�B which in-
duces a smaller moment of about half a Bohr magneton in
the 5d6sp valence band. Because the laser pulse excites
electron-hole pairs in the valence band, it is assumed �see,
e.g., Ref. 14� that the primary spin-flip processes appear by
scattering of valence electrons and that the exchange cou-
pling between valence electrons and 4f electrons is respon-
sible for a simultaneous demagnetization of the 5d6sp and
the 4f system. By analyzing the available experimental data
within the microscopic three-temperature model it has been
shown14 that in spite of the drastically different demagneti-
zation rates for 3d metals and Gd the spin-flip probabilities
ael for the 3d electrons and the 5d6sp electrons agree within
a factor of about two. The different relaxation rates result
from the fact that in the 3d metals the demagnetization com-
pletes at high electron temperatures �before electron-phonon
equilibrium is achieved� whereas in Gd the electron tempera-
ture is drastically reduced during demagnetization, leading to
a reduced demagnetization rate after an initial rapid decay.

In the present paper we consider the fast �i.e., Gilbert-
type� dynamics for a homogeneous, i.e., position-
independent magnetization M�t�=M4f�t�+m�t� in Gd. As
discussed above, M�t� is dominated by the 4f contribution
M4f�t� which induces a valence-electron magnetization m�t�
via the exchange coupling between 4f electrons and 5d6sp
valence electrons. Concerning the damping, angular momen-
tum may be transferred to the lattice both from the 4f elec-
trons �e.g., via phonon-modulated crystal-field interactions�
and the 5d6sp valence electrons �e.g., by spin-dependent
scattering of electrons at phonons or defects�. Because the
dynamics of M4f�t� is coupled to the dynamics of m�t� via
the exchange coupling between these two subsystems, the
damping of m will also lead to a damping of M4f and vice
versa. It is one of the objectives of the present paper to
consider �Sec. II A� the mutual interactions between m�t�
and M4f�t� within a phenomenological model, i.e., a classical
version of the s-f model17 �where the label “s” denotes the
5d6sp valence electrons�. This model is the analog to the
well-known s-d model �see, e.g., Refs. 18–20� for transition-
metal ferromagnets or magnetic semiconductors �where the
label s now denotes the sp valence states and “d” the d states
of transition-metal atoms�. In this model, Gilbert-type equa-
tions of motion are used for m�t� and M4f�t� which include
Gilbert damping terms with a damping scalar �5d6sp and �4f,
respectively. The two equations are coupled via a respective
exchange torque which contains the finite exchange interac-
tion between m and M4f, i.e., we do not assume a rigid
coupling between the two subsystems �in contrast to the ap-
proach of Ref. 14�. Under certain approximations an effec-
tive equation of motion of Gilbert type is obtained where
only the magnetization M4f appears and where the mutual
interaction between M4f and m is reflected in an effective
gyromagnetic ratio and in an effective damping scalar �4f

ef f

which contains both �4f and �5d6sp. It will be shown that this
approach is equivalent to the s-d model calculations of Ref.
20 where the Gilbert term in the equation for m is replaced
by a Bloch-type relaxation term with a transverse relaxation
time T2, and a relation between �5d6sp and an analog relax-

ation time T̃2 is derived.

In the conventional s-d model the quantity T2 is taken as
a parameter. It is the second objective of the present paper
�Sec. II B� to calculate �5d6sp—which in a general situation
has to be replaced by a damping matrix �= 5d6sp—by the ab
initio density-functional electron theory within Kamberský’s
breathing Fermi-surface model.6,7,9–11,21 This model holds for
low scattering rates of electrons, i.e., for low temperatures
and low defect concentrations. The damping matrix for Gd
will be compared with the one for Co �Sec. III�. In view of
the drastically different electronic structures of these two ma-
terials it will be interesting to compare the two damping
matrices both with respect to their magnitudes as well as
with respect to their orientational and rotational anisotropies.

II. CALCULATIONAL PROCEDURES

A. Phenomenological s-f model

We now want to describe the mutual interaction between
the two magnetic subsystems, the valence magnetization m
formed by 5d6sp states �labeled by the symbol s� and the 4f
magnetization M4f, by a phenomenological s-f model which
is the counterpart to the s-d model, used for transition-metal
ferromagnets and for magnetic semiconductors. We write
down the equations of motion for m and M4f which are
coupled by the exchange interaction between the two sub-
systems.

In a homogeneous situation we suggest for the equation of
motion for the valence-electron magnetization m�t� the fol-
lowing Gilbert-type equation:

dm

dt
= − ��m � Hm

ef f� +
1

m
m � �= 5d6sp

dm

dt
− T . �2�

In Eq. �2� Hm
ef f is the effective field acting on m which is

composed of the external field Hext, the anisotropy field
Hm

aniso for the 5d6sp magnetization and the demagnetization
field Hdemagn. The second term describes the damping. The
third term is the torque density exerted by M4f on m due to
the exchange interaction between 4f electrons and 5d6sp
electrons. It is modeled in the spirit of the s-d model18 as

T = −
1

�exM4f
M4f � m �3�

with

�ex =
�

SJex
, �4�

where Jex is the 4f-5d6sp exchange coupling constant and
S=7 /2 is the total spin of the 4f shell of Gd.

For M4f�t� we suggest again a Gilbert-type equation of
motion

dM4f

dt
= − ��M4f � H4f

ef f� +
1

M4f
M4f � �4f

dM4f

dt
+ T .

�5�

The effective field for the 4f magnetization is H4f
ef f =Hext

+Hdemagn, there is no 4f anisotropy field21 because of the
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spherical 4f charge density of Gd. For simplicity, we de-
scribe the damping of M4f by a scalar damping constant �4f.
The third term describes the torque density exerted by m on
M4f.

Equations �2�–�5� represent a closed system of equations
for m�t�, M4f�t� and hence for the total magnetization M�t�
=M4f�t�+m�t� which may be solved numerically for given
initial conditions m�t=0� and M4f�t=0�. Because of the cou-
pling between m and M4f, the damping matrix �= 5d6sp will
contribute to the effective damping of M4f which is no
longer determined exclusively by �4f, and the damping sca-
lar �4f will contribute to the effective damping of m which is
no longer determined exclusively by �= 5d6sp. In order to ob-
tain a qualitative feeling for this, we determine the effective
damping of M4f�t� by a simple analytical calculation. In or-
der to make such an analytical calculation feasible, we per-
form the following rough approximations. We assume that
the third term in Eq. �2� is much larger than the first term
which we therefore neglect completely. �The same approxi-
mation is made in the s-d model of Ref. 20.� Furthermore,
we consider a situation where the momentary orientation of
m is along a high-symmetry direction of the crystal so that
the damping matrix �= 5d6sp can be replaced10 by a damping
scalar �5d6sp. Altogether, the equation of motion for m�t�
then reads

dm

dt
=

1

m
m � �5d6sp

dm

dt
− T �6�

which has to be solved together with Eqs. �3�–�5�.
To do this, we subdivide m�t� according to

m�t� = m0�t� + 	m�t� . �7�

Here

m0�t� =
m0

M4f
M4f�t� �8�

is the 5d6sp magnetization which would appear in an adia-
batic situation where m and M4f are collinear due to the
exchange coupling Jex. In a nonadiabatic situation the
valence-electron magnetization does not follow M4f�t� adia-
batically, giving rise to a contribution 	m�t� which is perpen-
dicular to M4f�t�. Inserting Eqs. �7� and �8� into Eqs. �3� and
�6� and neglecting d�	m� /dt as in the conventional s-d
model18 we find after some algebra

T = −
m0

M4f

dM4f

dt
+

m0

M4f
2 M4f � �5d6sp

dM4f

dt
. �9�

Inserting Eq. �9� into Eq. �5� yields

dM4f

dt
= −

�

1 + m0/M4f
�M4f � H4f

ef f� +
1

M4f
M4f � �4f

ef f dM4f

dt
,

�10�

i.e., a Gilbert equation with a renormalized gyromagnetic
ratio � / �1+m0 /M4f� and an effective 4f damping scalar

�4f
ef f =

�4f

1 + m0/M4f
+

�5d6sp

1 + M4f/m0
. �11�

For the case �4f =0 the effective damping parameter for the
4f magnetization thus is given by

�4f
ef f =

�5d6sp

1 + M4f/m0
�

m0

M4f
�5d6sp. �12�

Because the ratio m0 /M4f is small, �4f
ef f is considerably

smaller then �5d6sp.

B. Ab initio calculation of �5d6sp

As outlined in Sec. I, we do not consider �5d6sp as an open
parameter, but we calculate it by the ab initio density-
functional electron theory. It has been shown in Ref. 22 that
the damping in the 3d ferromagnets Fe, Co, and Ni is domi-
nated by the excitation of electron-hole pairs caused by the
magnetization dynamics and their subsequent relaxation due
to electronic-scattering processes. We assume that the same
holds for the damping in the 5d6sp subsystem of Gd. For
this situation there are two contributions to damping,6–8,22 a
conductivitylike contribution which is proportional to the re-
laxation time � for electronic-scattering processes and which
results from electron-hole pairs generated in the same va-
lence band �“intraband contribution”�, and a resistivitylike
contribution which is �for large �� proportional to 1 /� and
which results from electrons and holes generated in different
bands �interband contribution�. Both contributions are in-
cluded in Kamberský’s torque correlation model,23 and the
conductivitylike contribution of this model is equivalent6,22

to Kamberský’s breathing Fermi-surface model.9–11,24 We
consider only the conductivitylike contribution which
dominates7,22 at large � �low scattering rates�, i.e., our calcu-
lations are based on the ab initio variant of the breathing
Fermi-surface model described in full detail in Refs. 9–11,
22, and 25.

The breathing Fermi-surface model is valid if the charac-
teristic time scale �m of the change in m�t� is much larger
than the scattering time � which describes the relaxation of
the electronic occupation numbers. For �m /� going to infinity
the electronic system is at any time in its ground state with
respect to the momentary orientation of m�t�, and there is no
damping at all. In this situation the adiabatic single-electron
energies 
 jk of the valence electrons �j denotes the band
index and k is the wave vector� depend on the momentary
orientation of m, and thus the adiabatic Fermi-surface
changes in time �it “breathes”�. In a nonadiabatic situation
the momentary occupation numbers njk for the single-
electron states lag behind the momentary adiabatic Fermi-
Dirac occupation numbers f jk which means that electrons
and holes are formed with respect to the adiabatic situation.7

The electronic-scattering processes then tend to restore the
adiabatic situation, but because �m /� now is still large but
finite this requires time. The scattering processes which drive
njk toward f jk transfer in net angular momentum from the
electronic system to the lattice and this produces damping.

Within the breathing Fermi-surface model the damping
term for m�t� is given by 1 /m�m��= 5d6spdm /dt� with9–11
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m��5d6sp���

��
= − �

i

� f jk

�
 jk
� �
 jk

�e�
�

e
� �
 jk

�e�
�

e
= Z . �13�

In Eq. �13� the 
 jk are the adiabatic energies of the single-
electron valence states and f jk is the adiabatic Fermi-Dirac
distribution function, both defined for the momentary orien-
tation e�t�=m�t� /m�t�. The derivatives �
 jk /�e of the ener-
gies with respect to the orientation e�t� are calculated by a
special variant of the magnetic force theorem,26 for details
see Ref. 11. In the band-structure calculation the 4f states are
treated as open core states with appropriate constraints21

which guarantee the correct localization of the 4f charge
density and the correct 4f atomic moment of 7�B for Gd.
The valence states are determined by the tight-binding linear-
muffin-tin-orbital method in the atomic-sphere
approximation27 in which spin-orbit coupling28 has been
implemented. The parameter � is a phenomenological relax-
ation parameter which describes the relaxation of the nona-
diabatic occupation numbers njk�t� toward the adiabatic
Fermi-Dirac occupation numbers f jk�e�t��. It encompasses in
an effective manner all the microscopic spin-flip scattering
processes which are responsible for the transfer of angular
momentum from the valence electrons to the lattice, for the
given dynamical situation described by the breathing Fermi-
surface model. Because the parameter � is not known it is
often approximated by the Drude relaxation time for the
electrical resistivity, and therefore the breathing Fermi-
surface contribution to damping which is proportional to �
�see Eq. �13�� is called conductivitylike contribution. The use
of a single phenomenological Drude relaxation time is cer-
tainly not strictly valid. It has been shown29 that while this
approximation works well for the long lifetime limit, i.e., for
the intraband terms described by the breathing Fermi-surface
model, vertex corrections can be important in the short life-
time limit, where the interband terms dominate. Please note
that the breathing Fermi-surface model describes explicitly
�via �
 jk /�e� only the change in the adiabatic Fermi surface
with the dynamics of e�t� whereas it does not try to calculate
the spin-flip scattering processes. In contrast, in the theories
for the ultrafast magnetization dynamics the spin-flip prob-
ability ael is determined explicitly.30

In former ab initio calculations the breathing Fermi-
surface contribution to damping has been determined for the
itinerant 3d ferromagnets Fe, Ni, and Co. In the present pa-
per we consider the damping of the valence magnetization
for the rare-earth metal Gd. It will be interesting to see how
the damping in Gd compares to the one of Co �which has the
same crystal structure�, both concerning its magnitude as
well as its orientational and rotational anisotropy.

III. DISCUSSION AND NUMERICAL RESULTS

A. Relation between the present s-f model and the conventional
s-d model

In the conventional s-d model �which exists in different
variants, see, e.g., Refs. 18–20� basically the same strategy is
used as in the present s-f model. The total magnetization is
again composed of a small valence part m, originating from
itinerant electrons and a large part Md which is related to

localized electrons, and m is again subdivided into an adia-
batic part m0 and a nonadiabatic part 	m. Furthermore, again
equations of motion for m and Md are considered which are
coupled by an exchange torque. The equation for Md has the
same form as Eq. �5� whereas in the equation for m the
Gilbert term for the damping is replaced by a Bloch-type
relaxation term

Trel = −
m − m0

T2
. �14�

The quantity20 T2 �in Refs. 18 and 19 denoted as �sf and �sr
s ,

respectively� is called transverse spin-flip time,20 spin-flip
relaxation time,18 or just spin-relaxation time.19 It is the time
which characterizes the decay of the transverse magnetiza-
tion component 	m=m−m0, i.e., a time characterizing the
“macroscopic” quantity 	m. It should not be confused with
the microscopic relaxation time � for the electronic occupa-
tion numbers as introduced in Sec. II B, see below.

The Gilbert-type Eq. �2� of the present s-f model may be
approximately cast into the form used in the conventional s-d
model with the relaxation term in Eq. �14�. To achieve this,
we multiply Eq. �2� �omitting the first term and replacing
�= 5d6sp by �5d6sp, see Sec. II A� from left with m, solve for
m�dm /dt and insert this quantity again in Eq. �2�, yielding

dm

dt
=

1

�exM4f�1 + �5d6sp
2 �

M4f � m

+
�5d6sp

�exM4fm�1 + �5d6sp
2 �

�m2M4f − m�m · M4f�� .

�15�

Using Eqs. �7� and �8� and the approximation �	m�2�0,
�m���m0�, we find

dm

dt
= −

�5d6sp

�ex�1 + �5d6sp
2 �

�m − m0� −
T

�1 + �5d6sp
2 �

. �16�

Inserting Eqs. �7� and �8� into Eqs. �3� and �16� and neglect-
ing d�	m� /dt reproduces the Eqs. �9�–�11�. Denoting the
prefactor in front of −�m−m0� as inverse transverse spin-flip

time T̃2,

1

T̃2

=
�5d6sp

�ex�1 + �5d6sp
2 �

, �17�

then Eq. �16�

dm

dt
= −

m − m0

T̃2

−
T

�1 + �5d6sp
2 �

�18�

looks very similar to the corresponding equation of the s-d
model �see, e.g., Eq. �5� of Ref. 20�, except for the factor
1 / �1+�5d6sp

2 � in front of the exchange torque T �given by Eq.
�3��. This difference results from the fact that we start from
the Gilbert-type Eq. �6� where the damping is proportional to
the speed of change in the magnetization, dm /dt, whereas in
the s-d model the damping term in Eq. �14� is proportional to
the difference m−m0.
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With Eqs. �17� and �12� we find �for the case �4f =0� a

relation between �4f
ef f and T̃2

1

T̃2

=

��4f
ef f	1 +

M4f

m0



1 + ��4f
ef f�2	1 +

M4f

m0

2 �19�

with �=1 /�ex=SJex /�. This equation is the counterpart to
Eq. �6� of Ref. 20 �which is slightly different from the cor-
responding equation of Ref. 18�

�d
ef f = �T2�1 + ��T2�2�−1 m0

Md
. �20�

Although the forms of Eqs. �19� and �20� are different, they
exhibit the same asymptotic behavior. For small �4f

ef f, Eq.
�19� reduces to

�4f
ef f =

1

	1 +
M4f

m0

�T̃2

, �21�

which is equivalent to Eq. �1� given for �d
ef f in Ref. 19. For

large �T2 �i.e., small �d
ef f� Eq. �20� reads

�d
ef f =

1

Md

m0
�T2

, �22�

which is also nearly equivalent to Eq. �21� because of
M4f

m0
,

Md

m0

1. In Ref. 20 this term is denoted as “spin-pumping

contribution.” The motion of the 4f magnetization pumps
spin angular momentum into the system of valence electrons
and this angular momentum is subsequently transferred to
the lattice by electron-lattice scattering processes. For large
�4f

ef f ��5d6sp, when the dynamics of the valence magnetiza-
tion m in Eq. �16� is dominated by the relaxation term, Eq.
�19� reduces to

�4f
ef f =

�

	1 +
M4f

m0

 T̃2, �23�

and for
M4f

m0

1 this is again equivalent to the result found

from Eq. �20� for the case of small �T2, when the dynamics
in Eq. �5� of Ref. 20 is dominated by the relaxation. We will
see in Sec. III B that for Gd �4f

ef f is rather small. Therefore,
our result for �4f

ef f represents the spin-pumping contribution
to the effective 4f damping.

As outlined in the introduction and in Sec. II B we do not

consider T̃2 as a free parameter but we determine this quan-
tity from Eq. �13� where we calculate �4f

ef f =�5d6sp / �1
+M4f /m0� by the ab initio density-functional electron theory.
When we take into account �as we do� just the intraband
contribution to �5d6sp �which is proportional to the electronic
relaxation time ��, then the “spin-pumping term” �given by

Eq. �21�� yields T̃2� 1
� . In contrast, when we take just the

interband contribution to �5d6sp �which is proportional to

1 /�� then the spin-pumping term gives T̃2��. Accordingly,

we find for the other limit given by Eq. �23� that T̃2��

�T̃2� 1
� � when we consider the intraband �interband� contri-

bution to �5d6sp. From this discussion it becomes clear that
one should not try to denote one of the two limits given by
Eqs. �21� and �23� as breathing Fermi-surface contribution.
The breathing Fermi-surface contribution is the one for
which �4f

ef f is proportional to the “microscopic” relaxation
time �, it is not necessarily related to the one for which �4f

ef f

is proportional to the macroscopic relaxation time T̃2.

B. Numerical results for �= 5d6sp

As discussed in Sec. II B, the breathing Fermi-surface
model describes explicitly only the driving force for the
magnetic relaxation, i.e., the change in the adiabatic Fermi
surface with the dynamics of e�t�, whereas the scattering
process itself is accounted for by a phenomenological relax-
ation parameter. When considering different materials such
as Co and Gd, it makes sense to compare the right-hand side
of Eq. �13� for the two materials because this side contains
all the electronic information on the systems. Figure 1 rep-

FIG. 1. The two eigenvalues �p �p=1,2, symbols �� of the
matrix m�= /�� as function of the orientation of the magnetization in
the crystal, and the arithmetic mean of the two eigenvalues �symbol
��, for Gd �top� and Co �bottom, from Ref. 25�.
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resents the two eigenvalues �p, p=1 and 2, of the matrices
ZGd=m�= 5d6sp /�� for Gd �top� and ZCo=m�= 3d4sp /�� for Co
�bottom� for the valence electrons as function of the orienta-
tion of e�t� in the crystal. It becomes obvious that the degree
of anisotropy of �= is similar for the two materials. The ei-
genvalues of m�= 5d6sp /�� are a factor of about 3–10 larger for
Gd with the more delocalized 5d states than for Co with the
more localized 3d states.

The figure represents in addition the arithmetic mean of
the two eigenvalues which �to a very good approximation�
determines the linewidth of a ferromagnetic resonance
experiment.31 For a situation for which the breathing Fermi-
surface model is valid �i.e., for slow magnetization dynamics
and low scattering rates� the linewidth of the ferromagnetic
resonance in Co and Gd should be anisotropic, i.e., it should
depend on the orientation of the dc field in the sample.

In the following we assume that the relaxation times � for
Gd and Co are similar. Because the valence moment of Gd is
about a factor of three smaller than the one of Co, the damp-
ing constant �5d6sp=��ZGd /m then is a factor of 10–30 larger
than the parameter �3d4sp

Co of Co. According to Eq. �12�, and
taking into account M4f /m0
1 and m�m0, the indirect con-
tribution of the valence electrons to �4f

ef f is given by

�4f
ef f ,indirect =

��

M4f
ZGd, �24�

which is �4f
ef f ,indirect��0.7–2.3��3d4sp

Co . The lower limit holds
for the �0001� orientation of the magnetization. Altogether,
we thus predict that for this orientation the indirect contribu-
tion of the valence states to the effective 4f damping param-
eter is comparable to the one of Co, which—in turn—is con-
siderably smaller22 than the damping parameter of Ni.

IV. CONCLUSIONS

In the rare-earth metals the magnetization dynamics is
determined by the interplay between the localized 4f elec-
trons and the delocalized 5d6sp valence electrons, whereby
both electronic subsystems can deliver angular momentum to
the lattice and can thus produce damping. Within a special
variant of the classical s-f model, Gilbert-type equations of
motion for the 4f magnetization M4f�t� �with a damping sca-
lar �4f� and for the valence magnetization m�t� �with �5d6sp�
are written down, which are coupled by exchange torques.
For a homogeneous situation an effective Gilbert equation

just for M4f�t� is derived with an effective damping param-
eter �4f

ef f =�4f +�5d6sp / �1+M4f /m�.
Our s-f model is similar to the conventional s-d model for

itinerant ferromagnets apart from the fact that in the s-d
model the damping is not described by a Gilbert term but by
a Bloch-type relaxation term with a transverse spin-flip re-
laxation time T2. It is shown that the Gilbert damping term of
our s-f model can be cast into a Bloch-type relaxation term

with a spin-flip relaxation time T̃2, and a relation between T̃2
and �5d6sp is derived. In the conventional s-d model the
quantity T2 is taken as an open parameter. Because we have

the relation between T̃2 and �5d6sp, and because a well-
established electronic theory for the Gilbert damping exists
�the ab initio version of Kamberský’s torque correlation
model including a conductivitylike �breathing Fermi surface�
and a resistivitylike contribution to damping�, we are in the

position to calculate �5d6sp and hence T̃2 and �4f
ef f on the

electronic level.
We have calculated �5d6sp �which, in general, has to be

replaced by the matrix �= 5d6sp� by the ab initio density-
functional electron theory for the case of low electronic-
scattering rates for which the breathing Fermi-surface contri-
bution dominates. The damping of the valence-electron
magnetization of Gd is considerably larger than the one of
the itinerant ferromagnet Co but exhibits a similar degree of
orientational and rotational anisotropy.

Altogether, a complete microscopic theory for the contri-
bution �5d6sp / �1+M4f /m� of the valence electrons to the ef-
fective damping parameter �4f

ef f of the 4f magnetization M4f
of Gd has been given. It is predicted that for a �0001� orien-
tation of the magnetization this contribution is comparable to
the damping parameter of Co �which is rather small�. The
total effective damping �4f

ef f is the sum of this valence-
electron contribution and the direct 4f contribution �4f
which cannot be calculated within the framework of the
present theory. Therefore, it would be highly interesting to
measure the effective damping for a Gd sample at low va-
lence scattering rates, i.e., for samples of high purity and at
low temperatures. A measured damping parameter which is
considerably larger than our calculated valence contribution
would reveal the dominance of the direct 4f contribution �4f.
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